Search results for "Penalized inference"

showing 4 items of 4 documents

Model selection for factorial Gaussian graphical models with an application to dynamic regulatory networks.

2016

Abstract Factorial Gaussian graphical Models (fGGMs) have recently been proposed for inferring dynamic gene regulatory networks from genomic high-throughput data. In the search for true regulatory relationships amongst the vast space of possible networks, these models allow the imposition of certain restrictions on the dynamic nature of these relationships, such as Markov dependencies of low order – some entries of the precision matrix are a priori zeros – or equal dependency strengths across time lags – some entries of the precision matrix are assumed to be equal. The precision matrix is then estimated by l 1-penalized maximum likelihood, imposing a further constraint on the absolute value…

0301 basic medicineStatistics and ProbabilityFactorialDependency (UML)Computer scienceGaussianNormal Distributionpenalized inferencesparse networkscomputer.software_genreMachine learning01 natural sciencesNormal distribution010104 statistics & probability03 medical and health sciencessymbols.namesakeSparse networksGeneticsComputer SimulationGene Regulatory NetworksGraphical model0101 mathematicsgene-regulatory systemMolecular BiologyProbabilityMarkov chainModels GeneticPenalized inferencebusiness.industryModel selectiongraphical modelGene-regulatory systemsComputational Mathematics030104 developmental biologysymbolsA priori and a posterioriData miningArtificial intelligenceGraphical modelsSettore SECS-S/01 - StatisticabusinesscomputerNeisseriaAlgorithmsStatistical applications in genetics and molecular biology
researchProduct

Inferring slowly-changing dynamic gene-regulatory networks

2015

Dynamic gene-regulatory networks are complex since the interaction patterns between their components mean that it is impossible to study parts of the network in separation. This holistic character of gene-regulatory networks poses a real challenge to any type of modelling. Graphical models are a class of models that connect the network with a conditional independence relationships between random variables. By interpreting these random variables as gene activities and the conditional independence relationships as functional non-relatedness, graphical models have been used to describe gene-regulatory networks. Whereas the literature has been focused on static networks, most time-course experi…

Dynamic network analysisL1 penalized inferenceComputer scienceT-LymphocytesGene regulatory networkgene regulatory networkMachine learningcomputer.software_genreBiochemistrygene-regulatory networksStructural Biologygraphical modelscomputer simulationT lymphocyteHumansGene Regulatory NetworkshumanGraphical modelMolecular Biologylymphocyte activationClass (computer programming)Models Statisticalalgorithmbusiness.industryResearchApplied Mathematicsstatistical modelStatistical modelComplex networkQuantitative Biology::GenomicsComputer Science ApplicationsComputingMethodologies_PATTERNRECOGNITIONConditional independencemicroarray analysisComputingMethodologies_GENERALArtificial intelligencebusinessmetabolismRandom variablecomputerAlgorithmsBMC Bioinformatics
researchProduct

A Software Tool For Sparse Estimation Of A General Class Of High-dimensional GLMs

2022

Generalized linear models are the workhorse of many inferential problems. Also in the modern era with high-dimensional settings, such models have been proven to be effective exploratory tools. Most attention has been paid to Gaussian, binomial and Poisson settings, which have efficient computational implementations and where either the dispersion parameter is largely irrelevant or absent. However, general GLMs have dispersion parameters φ that affect the value of the log- likelihood. This in turn, affects the value of various information criteria such as AIC and BIC, and has a considerable impact on the computation and selection of the optimal model.The R-package dglars is one of the standa…

Statistics and ProbabilityNumerical Analysishigh-dimensional data dglars penalized inference computational statisticsStatistics Probability and UncertaintySettore SECS-S/01 - Statistica
researchProduct

Inferring slowly changing dynamic gene-regulatory networks

2014

Dynamic gene-regulatory networks are complex since the interaction patterns between its components mean that it is impossible to study parts of the network in separation. This holistic character of gene-regulatory networks poses a real challenge to any type of modelling. Graphical models are a class of models that connect the network with a conditional independence relationships between the random variables. By interpreting the random variables as gene activities and the conditional independence relationships as functional non-relatedness, graphical models have been used to describe gene-regulatory networks. Whereas the literature has been focused on static networks, most time-course experi…

graphical modelpenalized inferencegene regulatory-networkSettore SECS-S/01 - Statistica
researchProduct